Н.А. Мытник
КРАТКАЯ ИСТОРИЯ КОРАБЕЛЬНЫХ НАУК
(хронология событий с комментариями)
Характеризуется использованием в корабельных науках электронно-вычислительной техники, которая позволяет решать многие научные задачи с использованием более трудоемкого математического аппарата либо без применения упрощений, призванных ранее за счет уменьшения точности снижать трудоемкость вычислений. Совершенствование с помощью ЭВМ ранее разработанных математических моделей и экспериментальных данных переводит постепенно развитие корабельных наук в эволюционное русло, в целом повышая качество научных исследований. Применение все более совершенной вычислительной техники позволяет переходить к реализации таких моделей, использование которых в предыдущих периодах оказывалось просто физически невозможным. Появление смежных научных направлений в корабельных науках, находящихся на стыках различных, порой значительно отличающихся в задачах, областей знаний. На фоне глобальной конфронтации США и СССР наибольшее развитие корабельные науки получают в этих странах, а позднее в Европе и Японии, уступая окончательно приоритетность наукам, обслуживающим космос, авиацию и ракетостроение, электронику и энергетику, информационные технологии и микробиологию.
В судостроении, как государственном, так и частном используется только труд наемных рабочих. Основное судостроительное производство в гражданском секторе постепенно перемещается в восточные страны с более дешевой рабочей силой - Японию, Корею, Тайвань и Китай. Судостроение по-прежнему развивается на базе последних научных достижений в различных областях корабельных наук, что в равной мере распространяется как на военный, так и гражданский флот. Переориентация судостроительного производства с крупносерийного в начальном этапе к одиночному в конце периода за счет использования гибких систем автоматизированного проектирования и подготовки производства. Структурные изменения судостроительных предприятий, традиционно занимавшихся только постройкой судов, в сторону многопрофильного производства самой разнообразной продукции. Разукрупнение и реорганизация крупных НИИ и КБ в конце периода.
Основной судостроительный материал - сталь, алюминиевые сплавы, пластмассы. Передовая продукция судостроения - атомные надводные корабли и суда, а также подводные лодки и газотурбинные суда с динамическими принципами поддержания - суда на подводных крыльях, суда на воздушной подушке и экранопланы. Окончательный переход на сварочную технологию постройки металлических судов. В середине 70-х годов наблюдается пик судостроительного производства за всю его историю, строятся самые большие суда - супертанкеры. На гражданских судах в условиях постоянного дорожания органического топлива дизель вытесняет все существующие типы судовых двигателей.
Мореплавание достигает наивысшего уровня технического обеспечения благодаря использованию космической связи и автоматизации судов. Экипажи гражданских судов формируются вольнонаемными людьми, а военных - как вольнонаемными, так и военнообязанными.
Локальные войны на море и суше в период деколонизации стран третьего мира (1946-1960 гг.) и постколониальный период за контроль над энергетическими ресурсами (с 1960 г. до настоящего времени). Разнообразное ядерное ракетное оружие, ставшее основным видом современного вооружения с 60-х годов, в корне меняет тактику ведения морских боев, делая ее в большинстве случаев бессмысленной. Вся она сводится к простому принципу: “кто опередит - тот и уцелеет”. Любой, даже самый совершенный корабль, становится уязвимым. Для ведения боев без использования ядерного оружия по-прежнему большое внимание уделяется морской авиации, минно-торпедному и артиллерийскому вооружению.
Как практический итог развития кибернетики в 1945 г. американскими учеными создается первая электронно-вычислительная машина. Уже к концу 40-х годов в ведущих научно-исследовательских институтах и предприятиях авиационной и судостроительной промышленности США появляются ЭВМ, способные решать сложные научные и инженерные задачи, в частности большие системы дифференциальных уравнений, представленные в матричной форме.
В 1948 г. советский ученый-гидромеханик Макс Хаскинд (р.1913 г.) разрабатывает современную общую линейную гидродинамическую теорию качки судна на регулярном волнении, которая позволяет учитывать взаимодействие корпуса судна и волнового потока. Проведенные им исследования признаны наиболее важными и принципиальными со времени публикации работ Крылова.
В том же году Морским Регистром СССР были опубликованы и введены в действие первые в истории гражданского судостроения и судоходства официальные правила, регламентирующие остойчивость судна в неповрежденном состоянии, - нормы остойчивости для торговых морских и рейдовых судов.
Примерно в это же время английский химик Б. Томс теоретически обосновывает эффект снижения сопротивления трения в турбулентном потоке жидкости, содержащей разбавленные растворы высокомолекулярных полимеров.
В 40 - 50-е годы Келдыш исследует гидродинамику движения подводных тел, разрабатывает теорию удара тела о жидкость, теорию колеблющегося крыла (явление резонанса крыльев, получившее название флаттера, было впервые обнаружено на первых реактивных самолетах), развивает теорию волнового сопротивления и теорию гребного винта.
В 50-е годы советский ученый Михаил Лаврентьев (1900-1980 гг.), основываясь на работах Кочина, Келдыша и немецких ученых Г. Шертеля, О. Титьенса и Сакенберга, создает современную теорию крыла. Достижения советских ученых-гидродинамиков в этой области позволили талантливому кораблестроителю Ростиславу Алексееву (1916-1980 гг.) создать первые в мире крупные мелкосидящие речные суда на подводных крыльях (рис. 58). На них впервые, в отличие от зарубежных СПК, были реализованы малопогруженные крылья, способные не кавитировать и обеспечивать, тем самым, устойчивое движение судна без дельфинирования (килевая качка в результате неустойчивого движения) - негативного явления, присущего судам этого типа.
Краткая историческая справка: |
|
Краткая историческая справка: |
В 1956 г. американские ученые М. Тернер, Р. Клаф, Г. Мартин и Л. Топп, работавшие в фирме Боинга, опубликовывают первые научные работы, в которых окончательно формулируется концепция метода конечных элементов (МКЭ), заключающаяся в разбиении любой пространственной конструкции на условные элементы, связанные в ее узлах совместными уравнениями перемещений (рис.59). С 1960 г., когда был узаконен термин МКЭ, и до настоящего времени этот метод является мощным и достаточно универсальным инструментом для решения многих кораблестроительных задач механики деформируемого твердого тела.
Рис. 59. Схема конечного элемента.
Значение метода конечных элементов в анализе напряженно-деформируемого состояния сложных пространственных структур, какими являются, в частности, корпуса большинства судов, трудно переоценить. Если до этого корпус судна воспринимался как балка и расчеты местной прочности переборок, перекрытий и шпангоутных рам проводились выборочно ввиду физической невозможности оценки прочности всех фрагментов корпуса, то с появлением МКЭ задача общей и местной прочности решается сразу, причем чем выше уровень дискретизации конечных элементов, тем выше точность оценки местной прочности любого элемента корпуса.
То, что было абсолютно непосильно для ручных методов расчета прочности стало реальным благодаря применению ЭВМ и проблема очень качественной оценки напряженно-деформируемого состояния конструкции сводилась лишь к проблеме быстрой подготовки и ввода исходной информации.
Общая система линейных алгебраических уравнений пространственной конструкции, состоящей из конечных элементов.
[ K ] { Q}
= { F } ,
где [K] - общая матрица коэффициентов жесткости конструкции;
{ Q} - общий вектор узловых обобщенных перемещений; { F}
- общий вектор обобщенных внешних сил; qi - возможное перемещение (или усилие) узла конечного элемента; (EJ)i - заданная жесткость конечного элемента.
Рис.60. Первые советские серийные пассажирские СПК типа "Ракета" (L= 27 м; B= 5 м; T= 1,8/1,1 м; D= 25 т; v= 61 км/час; N= 1200 л.с.), построенные в 1957 г., поражали тогда не только простых наблюдателей своей стремительностью: многие зарубежные специалисты долго не могли поверить в возможность эффективной эксплуатации мелкосидящих судов такого типа, оборудованных малопогруженными крыльями, из за чрезвычайной сложности обеспечения устойчивого движения судна вследствие неизбежной кавитации крыльев.
В 1960 г. советские ученые-кораблестроители Дмитрий Дорогостайский и Владимир Семенов-Тян-Шанский (1899-1973 гг.) разрабатывают теорию диаграмм минимальной остойчивости судна и теорию диаграмм минимальной работы, которые явились крупным вкладом в развитие теории непотопляемости судна.
Краткая биографическая справка: |
С конца 50-х и до середины 60-х годов советскими и американскими учеными в области теории корабля и гидромеханики А. Вознесенским, Г. Фирсовым, М. Денисом, В. Пирсоном и др. разрабатывается вероятностная теория качки корабля на нерегулярном волнении, положившая начало использованию математической теории вероятностей в корабельных науках. Уже в 70-х годах вероятностные подходы начинают применяться в оценке прочности и теории проектирования судов.
Согласно спектральной теории вероятностей случайные процессы волнения и качки представляются в виде суммы элементарных гармонических процессов, характеризующихся спектральными плотностями, соотношение которых установлено советским математиком Александром Хинчиным (1894-1959 гг.)
Sвых(w ) =
½ Ф(w )½
2 Sвх ,
где Sвых - спектральная плотность выходного процесса (качка); ½ Ф(w )½
- модуль передаточной функции динамической системы (судно на поверхности воды), равный отношению амплитуды колебаний судна к амплитуде регулярной волны;
w - частота элементарной гармоники; Sвх
- спектральная плотность входного процесса (волнение).
С начала 60-х годов крупный вклад в развитие теории управляемости судна внесли советские ученые Федяевский, Геннадий Соболев, Абрам Басин. В результате в целом было завершено теоретическое обоснование этого важного для судовождения свойства, что в условиях интенсивного роста размеров транспортных судов, наметившегося в это время, оказалось очень актуальным. Это касалось прежде всего таких судов как танкеры, которые в отличие от крупнотоннажных пассажирских лайнеров имели относительно невысокую скорость хода, существенно затрудняющую управление судами в проливах и каналах.
Период с 1963 по 1971 год охарактеризовался серьезным прорывом в области вычислительной геометрии как теоретической основы машинной графики благодаря трудам американских ученых М.Бернштейна, Дж.Фергюсона, С.Кунса и П.Безье. И хотя математики, работавшие в этой области, были, в общем, далеки от судостроения, практическое значение их теоретических работ касалось, прежде всего, именно этой отрасли.
Объясняется это следующим обстоятельством. В кораблестроении корпус судна как сложное геометрическое тело изначально нуждается в обеспечении точности его изготовления не только с позиции гидроаэродинамики, что характерно, например, для авиации или автомобилестроения, но и с позиции гидростатики, которая для судна в силу его специфики всегда остается первичной.
С увеличением размеров судов проблема обеспечения заданной формы с любой точки зрения обостряется из-за масштабного эффекта переноса информации от маленьких чертежей до больших реальных конструкций. Кроме того, при создании, например, подводных лодок или некоторых судов с динамическими принципами поддержания особое значение имеет и точность обеспечения самой силы плавучести.
*) Специальное помещение на судоверфи для изготовления шаблонов и лекал по полномасштабным теоретическим чертежам или аналитическим зависимостям. |
Все это заставляло кораблестроителей при изготовлении шаблонов на плазе*) использовать специальные приемы сглаживания полномасштабных теоретических линий корпуса сначала с помощью специальных гибких линеек, называемых в судостроении сплайнами, а затем с 60-х годов и интерполяционных зависимостей, позволяющих линии плавно проходить через заданные проектной таблицей ординат точки. Имея на вооружении такие зависимости, заменяющие линейки и названные впоследствии так же, кораблестроители легко получали любые точки плазовой таблицы ординат, используемой уже для изготовления точных шаблонов или вырезки деталей корпуса автоматами.
В качестве сплайн-функций использовались давно известные в математике полиномы различной степени, наиболее удобным из которых считается параметрический кубический сплайн, впервые предложенный Фергюсоном в 1963 г. для описания сложных поверхностей.
, (1963 г.)
где t – параметр, изменяющийся от 0 до 1; - радиус-вектор произвольной точки кубической пространственной кривой с координатами x, y и z , зависящими от t; - векторы коэффициентов полинома.
В 1964 г. в обстановке строжайшей секретности произошло знаменательное событие в области гидродинамики: в СССР группой ученых Центрального аэрогидродинамического института (ЦАГИ) им. Н.Е.Жуковского под руководством Георгия Логвиновича (1913-2002 гг.) на опытном образце подводной ракеты была достигнута фантастическая скорость движения в воде – более 160 узлов, тогда как самые быстроходные торпеды в то время имели скорость порядка 55-60 уз. Идея использования газовой, в том числе воздушной прослойки между движущимся телом и водой для снижения общего гидродинамического сопротивления была известна кораблестроителям достаточно давно и, в частности, применение реданов на глиссерах и воздушной подушки на СВП в какой-то мере являются реализацией этой идеи. Реданы, которые стали использоваться на глиссерах еще с 20-х годов, значительно снижали сопротивление движению только на больших скоростях, когда за счет резкого снижения давления в воде при отрыве потока с редана кавитационный и засасываемый воздух мог образовывать тонкую пузырьковую пленку, идущую вдоль днища и снижающую сопротивление трения движению корпуса.
Краткая биографическая справка: Георгий Логвинович, советский ученый гидродинамик, участник Великой Отечественной войны, работал в минно-торпедном управлении Военно-морского флота и ЦАГИ им. Жуковского. Создатель системы "минного сопровождения кораблей", разработчик плавающих мин и фугасов, торпед, руководитель группы гидродинамики скоростного движения под водой. |
Однако проблема использования достаточно глубокой искусственной воздушной прослойки заключается в минимизации энергозатрат на поддув воздуха и эффективном управлении капризной каверной по поверхности тела, в особенности, если она криволинейная (рис.61). Специфичным при этом является и то, что дополнительно приходится решать проблемы негативного влияния воздушных каверн на движители, размещаемые, как правило, в корме.
Рис.61. Схема использования воздушной каверны на реданном днище судна: канал подачи воздуха к редану; 2- редан; 3- воздушная каверна.
Рис.62. Фантастическая подводная ракета М-5 комплекса «Шквал», созданная под руководством академика Логвиновича и стоящая на вооружении в советском подводном флоте с 1977 г., до сих пор не имеет аналогов за рубежом, на основании чего стала объектом одной шпионской истории, нашумевшей в прессе в самом начале XXI века. Благодаря специальному гидрореагирующему топливу, способному создавать наиболее эффективную тягу реактивному двигателю, и газовой каверне из продуктов химической реакции этого топлива ракета способна двигаться в воде со скоростью 200 уз при дальности до 11 км, что делает ее самым убийственным оружием ближнего боя (по свидетельствам очевидцев испытаний этого чуда военной техники не каждый вертолет, с которого велось наблюдение, мог догнать эту ракету). Так союз гидродинамики и химии привел к действительно выдающемуся техническому достижению.
Поразительные результаты испытаний подводной ракеты Логвиновича дают толчок исследованиям советских ученых и конструкторов в области использования воздушных каверн (воздушной смазки) сначала на глиссерах, а затем и на водоизмещающих судах, которые интенсивно проводились в Советском Союзе с конца 60-х годов. Это позволило затем практически реализовать их при строительстве судов различных типов, зачастую не имеющих аналогов за рубежом (рис.71).
Рис. 63. Английское серийное амфибийное судно на воздушной подушке типа "Сандерс Роу SR № 5" (L= 11,9 м; B= 7 м; D= 9,1 т; v= 66 уз; N= 900 л.с.), построенное в 1964 г., открыло целый ряд аварий судов этого нового типа из за потери остойчивости как на тихой воде, так и волнении. К этому времени скеговые СВП существовали уже давно, но они не испытывали серьезно этой проблемы, так как представляли собой, по сути, катамараны с гидродинамической разгрузкой; создание же амфибийных СВП стало возможным лишь тогда, когда появились надежные материалы и технологии для гибкого ограждения (юбки) воздушной подушки. Однако именно она из-за своей эластичности и вызвала серьезные проблемы в отношении как поперечной, так и продольной остойчивости у судов этого типа, которые пришлось решать ученым-кораблестроителям в конце 60-х годов.
События 1964 г.
В 1967 г. Кунс, используя идею разбиения поверхности и параметрические сплайны Фергюсона, разрабатывает общую теорию порций поверхности с помощью так называемых сглаживающих В-сплайнов, разница которых по сравнению с интерполяционными сплайнами показана на рис.64. Теория Кунса позволяет реализовать плавное локальное изменение поверхности при заданных четырех граничных кривых, образующих на поверхности заплату или порцию. При этом локальное изменение поверхности производится с произвольной точки управления, находящейся над или под ней (рис.65).
Рис.64. Сравнение характера интерполяционного сплайна (а) и В-сплайна (б) по отношению к семи узловым точкам описываемой поверхности.
Рис.65. Схема локального изменения поверхности: 1 – порция или заплата на произвольной поверхности; 2- граничные кривые порции; 3 – точка управления; 4 – линии сплайнов локально измененной поверхности.
В 1971 г. на основании работ Бернштейна и Кунса математик Безье разрабатывает первую диалоговую систему математического моделирования поверхности UNISURF, которая позволяла с помощью специальной сетки управления, состоящей из ломаных линий (ломаных Безье), легко проектировать отдельные участки кривых или поверхностей. Такую систему трудно переоценить как мощную предпосылку создания первых автоматизированных систем проектирования сложных поверхностей, в том числе корабельных (рис.66).
, (1971 г.)
где - радиус-вектор произвольной точки управляемого сплайна; n – cтепень сплайна; - радиус-вектор n+1 вершин однозначно ассоциированной с кривой сплайна ломаной Безье; t – параметр от 0 до 1; φ i = (n! t i (1 – t ) n - i)/(( n –1 )! t! ) – базовые функции полиномов Бернштейна.
Не случайно уже через несколько лет первые автоматизированные системы проектирования, используемые в судостроении, уже содержали элементы сплайн-интерполяции и аппроксимации сложных поверхностей, которые были основаны на последних достижениях вычислительной геометрии. Тогда, несмотря на то, что эти достижения были также востребованы для математического моделирования земной поверхности в программном обеспечении бортовых ЭВМ первых низколетящих крылатых ракет, уже открывались реальные перспективы ликвидации в технологии судостроения трудоемких и дорогих плазовых работ за счет полной автоматизации технологической подготовки производства.
Рис.66. Управляющая поверхность Безье: 1 – управляемая поверхность кубической сплайн-аппроксимации; 2 – управляющая сеть Безье; 3 – угловые неподвижные точки; 4 – управляющие точки.
В 1974 г. испанская фирма Sener разработала первую интегрированную систему автоматизированного проектирования и технологической подготовки производства судов (САПР и АСТПП), которая получила название ФОРАН, позволяющую автоматизировать все работы по проектированию и подготовке производства судна - от проектно-конструкторских до технологических. В отличие от американских САПР, ФОРАН была ориентирована на крупномасштабное строительство гражданских судов. В середине 70-х годов Испания, во многом благодаря переводу своей судостроительной промышленности на использование этой системы, пережила самый настоящий судостроительный бум: уже в 1977 г. эта страна занимала второе после Швеции место в Европе по выпуску гражданских судов (1813 тыс. рег. т.).
Аналогичные САПР вслед за этим были созданы в Швеции и Норвегии, Великобритании и Японии (рис.68). Применение систем автоматизированного проектирования и подготовки производства в процессе создания судна явилось самой настоящей технологической революцией в отрасли: то, чем занимались целые проектно-технологические организации, в которых работало над проектированием и подготовкой производства судна до нескольких сотен людей в течение одного - двух лет, стало вполне посильным для нескольких десятков человек, вооруженных вычислительной техникой с устройствами печати документации и способных создать рабочий проект судна за 2-3 месяца.
Рис.67. Танкер дедвейтом 260 тыс.т, спроектированный в 1974 г. испанской судостроительной фирмой Astilleros Espanoles с помощью САПР “Форан”.
Рис.68. Схема интегрированной системы автоматизированного проектирования и подготовки производства судов (САПР).
Рис.69. Советский малый десантный корабль-экраноплан типа "Орленок" (L= 58 м; B= 31,5 м (с крыльями); T= 1,5 м; D= 140 т; v=180 уз; N=15000 л.с), опытный прототип которого, созданный конструкторским бюро Р.Алексеева в 1974 г., испытал всю серьезность проблемы обеспечения устойчивости судов этого типа на переходных режимах: в результате одного из многочисленных испытаний экраноплан получил серьезные повреждения, что потребовало от ученых и конструкторов интенсивных исследований вплоть до запуска корабля в серийное производство в 1982 г.
С развитием САПР в дальнейшем за счет использования более совершенных пакетов прикладных программ для сплайн-аппроксимации судовой поверхности и расширения использования автоматов с ЧПУ к середине 80-х годов на передовых судостроительных предприятиях плаз как традиционно интеллектуальная структура производства потерял свое былое значение в современной технологии судостроения.
*) Афинным называется перестроение корпуса с изменением масштаба по осям и сохранением коэффициентов его формы. |
Так, к примеру, созданная в 1985 г. американской компанией Протеус первая версия пакета FastShip позволяла по проектной таблице ординат формировать математически гладкую поверхность с помощью параметрических кубических В-сплайнов (рис.72), афинно*) перестраивать ее и затем легко модифицировать в любом локальном направлении, выдавая в любой точке поверхности плазовые координаты.
В 1978 г. английскими учеными Карлом Бреббиа и Стефаном Уокером сформулирован новый численный метод для решения многих пространственных задач механики твердого тела и сплошных сред - метод граничных элементов, который нашел применение прежде всего в задачах гидроупругости. В отличие от метода конечных элементов, исследуемая материальная система разделяется на части, связанные совместными уравнениями перемещения по граничным поверхностям, что позволяет решать сложные задачи взаимодействия как сплошных сред между собой, так и твердого тела со сплошной средой на совершенно ином качественном уровне.
Рис. 70. Французское научно-исследовательское судно "Алсион" (L= 27,4 м; B= 9 м; T= 0,9 м; D=76 т; N= 230 кВт), построенное в 1985 г. по заказу Ж. Кусто для замены знаменитого "Калипсо", было оборудовано двумя "турбопарусами", использующими для создания тяги отсос пограничного слоя.
Рис.71. Первые серийные пассажирские суда на воздушной каверне «Линда» (L=24 м, В=4 м, Т=0,95 м, D=25 т, v=61 км/ч и N=1000 л.с), построенные в СССР в 1993 г., по своим характеристикам близки знаменитым алексеевским СПК «Ракета» (см. рис.58), однако обладают рядом очевидных преимуществ, очень важных для речных пассажирских судов, в том числе энергетического характера: 25-процентная экономия топлива, малая осадка и низкий уровень шума и вибрации.
В качестве компенсации внезапного окончания нашей истории хотелось бы отметить значение отечественной корабельной науки. Как известно со времен Петра Великого в России, а затем и Советском Союзе развитию судостроения всегда уделялось достаточно большое внимание, несмотря на то, что наша страна географически является сугубо континентальной. Это предопределило в свое время интенсивное развитие корабельных наук в нашей стране как крупнейшей морской державе и, несмотря на справедливую мысль об интернациональном характере науки, мы всегда будем гордиться целой плеядой выдающихся отечественных ученых-кораблестроителей, механиков и математиков, внесших вклад мирового значения в корабельные науки.
Эпогея своего развития отечественные корабельные науки получили после второй мировой войны в период с 50-х по 80-е годы, о чем свидетельствуют технические достижения в области судостроения, связанные с нашей страной. И сейчас, после сильнейшего кризиса, который испытала страна за прошедшее время, хочется верить, что молодое поколение наших ученых-кораблестроителей будет верно традициям отечественной научной школы и удержит передовые позиции в корабельной науке и в дальнейшем. Россия была сильнейшей морской державой и во имя наших предков, нашего будущего должна оставаться таковой.
Краткая история корабельных наук (хронология событий с комментариями)